skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singh, Yashapal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Presented herein is the discovery that bismuth( iii ) trifluoromethanesulfonate (Bi(OTf) 3 ) is an effective catalyst for the activation of glycosyl bromides and glycosyl chlorides. The key objective for the development of this methodology is to employ only one promoter in the lowest possible amount and to avoid using any additive/co-catalyst/acid scavenger except molecular sieves. Bi(OTf) 3 works well in promoting the glycosidation of differentially protected glucosyl, galactosyl, and mannosyl halides with many classes of glycosyl acceptors. Most reactions complete within 1 h in the presence of only 35% of green and light-stable Bi(OTf) 3 catalyst. 
    more » « less
  2. null (Ed.)
    Described herein is the first example of glycosidation of thioglycosides in the presence of palladium( ii ) bromide. While the activation with PdBr 2 alone was proven feasible, higher yields and cleaner reactions were achieved when these glycosylations were performed in the presence of propargyl bromide as an additive. Preliminary mechanistic studies suggest that propargyl bromide assists the reaction by creating an ionizing complex, which accelerates the leaving group departure. A variety of thioglycoside donors in reactions with different glycosyl acceptors were investigated to determine the initial scope of this new reaction. Selective and chemoselective activation of thioglycosides over other leaving groups has also been explored. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. An efficient synthesis of thioglycosides from per-acetates in the presence of triflic acid is described. The developed protocol features high reaction rates and product yields. Some reactive sugar series give high efficiency in the presence of sub-stoichiometric trifluoromethanesulfonic acid (TfOH) in contrast to other known protocols that require multiple equivalents of Lewis acids to reach high conversion rates. 
    more » « less
  6. Abstract While studying indolylthio glycosides, previously we determined their activation profile that required large excess of activators. This drawback was partially addressed in the present study of N‐alkylated SInR derivatives. The activation process was studied by NMR and the increased understanding of the mechanism led to a discovery of different activation pathways taking place with SIn versus SInR derivatives. Also investigated was orthogonality of the SInR leaving groups versus thioglycosides and selective activation of thioimidates over SInR glycosides. 
    more » « less